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Abstract. There has been disagreement in the literature on whether the hydrogen atom spectrum receives
any tree-level correction due to non-commutativity. Here we shall clarify this issue and show that indeed
a general argument on the structure of the proton as a non-elementary particle leads to the appearance
of such corrections. As a showcase, we evaluate the corrections in a simple non-relativistic quark model
with a result in full agreement with the previous one we had obtained by considering the electron moving
in the external electric field of proton. Thus the previously obtained bound on the non-commutativity
parameter, θ < (104 GeV)−2, using the Lamb shift data, remains valid.

Recently a large amount of research work has been devoted
to the study of physics on non-commutative space-times
and in particular the non-commutative Moyal plane (for a
review see, e.g., [1]). In these works both quantum mechan-
ics (QM) and field theory on non-commutative spaces have
been studied. Besides the theoretical interest, by compar-
ing the results of the non-commutative version of the usual
physical models with the present data, lower bounds on
the non-commutative scale ΛNC have been obtained [2–4]:
as a conservative estimate, we have ΛNC � 1–10 TeV.

In this paper we would like to focus on the hydro-
gen atom in the non-commutative space and re-analyze
its spectrum. This system has previously been considered
in [5, 6] with disagreement on the results. Here, through
a more careful analysis we intend to clarify the discrep-
ancy. In [5] we have analyzed the hydrogen atom in the
non-commutative space considering the system described
by a one-particle Schrödinger equation. Explicitly we con-
sidered the electron in an external Coulomb field; hence
the system is described by
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and in terms of these “canonical” coordinates, the Hamil-
tonian takes the familiar form of the usual hydrogen atom
plus non-commutative corrections (cf. (2.5) in [5]),

V (r, p) = −Ze2
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− Ze2

L · θ
4�r3

+O(θ2) , (8)

where θi = εijkθjk, r =
√∑

i x
2
i and L = r × p. (The

value of |θ| is the inverse square of the non-commutative
scale ΛNC.) From this we concluded that there exist non-
commutative corrections to the spectrum and comparing
our results with the data for the Lamb-shift experiments,
we obtained the bound ΛNC � 10 TeV.

On the other hand, in a more detailed analysis, the
nucleus (here the proton) which exerts the Coulomb po-
tential should also be considered as a dynamical object. In
other words, one should solve the two-body Schrödinger
equation. For the non-commutative hydrogen atom this
has been done in [6]. There it was assumed that the pro-
ton, similar to the electron, is described by NC QED [7,8].
Based on this assumption and the fact that under charge
conjugation θij changes sign [9], it was shown that the
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non-commutativity effects will not change the spectrum of
this two-body problem at the tree level (cf. (28) of [6]), in
disagreement with the results of [5] (in particular, with (8)).

In this note we argue that in fact the very basic assump-
tion of [6] that the effective non-commutativity parameter
for the proton is equal to that of the electron with a minus
sign is not physically valid. Therefore, the “cancellation”
of non-commutativity effects is not complete and hence our
previous results on the form (8) for the potential with the
correction term, as well as on the lower bound on ΛNC are
indeed valid. The essential point is that the proton, due to
the fact that it has structure and is a composite particle,
cannot be described by NC QED (applicable to elementary
particles). To systems such as positronium, however, the
analysis of [6] is applicable, resulting in no corrections to the
spectrum at the tree level, due to the non-commutativity of
space-time. Noting the conservative bounds on ΛNC � 1–
10 TeV obtained from another physical analysis [2,3], and
that ΛQCD, or the inverse of the proton size, is of the order
of 200 MeV, we notice that ΛQCD

ΛNC
� 1. In other words, the

QCD effects (here the internal structure of the proton) be-
come important much before the non-commutative effects.
In short, the proton in the non-commutative hydrogen atom
essentially behaves as a commutative particle.

A full analysis of the problem, however, needs a
better understanding of the non-commutative standard
model (NCSM). Unfortunately, despite several efforts in
constructing such a model [10,11], a complete formulation
of NCSM is not yet available. Therefore, to present a quan-
titave treatment of the issue with the above arguments, we
try to tackle the problem of finding an effective descrip-
tion of electromagnetic interactions of the proton through
a naive quark model. In such a model we can safely assume
that inside the proton we deal with free quarks.

However, there still remains a major problem to be ad-
dressed: in the NCQED the only possible charges coupled
to the photon are ±1, 0 [7, 12]. As a result, quarks (with
fractional charges) cannot be described by NCQED. Nev-
ertheless, since we are interested only in first order effects
in θ, we can use NCQED vertices for quarks,1 though only
up to first order in θ. Then the effective electron–proton
interaction is the sum of the electron–quark Coulomb po-
tentials for the u, u and d quarks, namely,

V = Vu1 + Vu2 + Vd . (9)

The expressions for the potentials Vq can be obtained,
as usual, as the non-relativistic limit of non-commutative
one-photon exchange,

Vq = −Qe2V
(
xq +

1
4
θ × Kq

)
, (10)

where V (r) = 1
|r| , Q is 2/3 and −1/3 for u and d quarks,

respectively; xq is the relative separation of the electron
1 One may also try to use the expressions given in [10,11] for

the vertices. In that case, although the numerical coefficients
(for the second term in (8), as derived from (9) and (10)) would
be slightly different from what we present here, the order of
the bound on ΛNC obtained in this way would be the same.

and the corresponding quark and Kq is Pe + Pu for the
u quark and Pe − Pd for the d quark (Pu and Pd are the
momenta of the corresponding quarks). The expression (10)
for the values of Q = +1 and Kq = K = Pe + Pp, with
Pp the momentum of the proton, formally coincides with
(28) of [6]. However, in [6] this was used for the overall
electron–proton potential.

We should emphasize that the expressions (10) are valid
up to the first order in θ. Expanding (10) to the first order
in θ, it is evident that the effective Coulomb potential of the
proton and electron does not only depend on the hydrogen
atom center of mass momentum, which is the sum of the
electron and proton momenta, Pe+Pp = Pe+Pu1 +Pu2 +
Pd, invalidating the result of [6].

As a by-product, based on a similar quark model con-
sideration on the electric dipole moment of the neutron,
one obtains the non-commutativity correction

dNC
n � −

∑
i

|Qi|θ × Pqi

with |Pu| ∼ |Pd| ∼ ΛQCD ∼ 200 MeV and therefore in
this model |dNC

n | ∼ e
ΛQCD

Λ2
NC

. Using the experimental upper
bound of |dn| < 0.63 × 10−25 e cm [13], one obtains the
lower bound ΛNC � 200 TeV.
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